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ABSTRACT

A wide variety of complex repair systems can be modeled as continuous time
Markov chains. These systems are closed networks of queues with a total of n jobs
circulating in the network. The process of interest is the number of jobs, Xa(t), at the
various repair centers at time t. After appropriate translation and scaling, we show that
the processes {Xa(t) : t > 0} converge weakly to a limiting multi-variate Ornstein-
Uhlenbeck process. This limit process is then used to obtain computable approximations
for Xa(t). Numerical results are presented for three specific repairman models and the
approximations are compared with exact results obtained through product form

formulae. In most cases the approximation is quite accurate.

Keywords: birth/death processes, diffusion approximations, logistics, Markov chains,

Ornstein-Uhlenbeck processes, repairman models, weak convergence.
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DIFFUSION APPROXIMATIONS FOR COMPLEX REPAIR SYSTEMS
by

Donald L. Igiehart
Stanford University

and

Atam P. Lalchandani

1. Introduction.

For many stochastic models in applied probability complicated Markov chains
arise which are impossible to analyze directly. A classical approach to this problem.
dating back to BACHELIER (1900), is to show that a sequence of Markov chains with
appropriate time and state scales converges at a given time point (or weakly) to a
limiting diffusion process. In these instances the limiting diffusion process may hold out
the only hope for providing useful approximations to practical problems.

When the Markov chains are one-dimensional birth-death processes in either
discrete or continuous time, STONE (1961), (1963) has developed a complete theory for
the weak convergence of these Markov chains, to a limiting diffusion. Roughly speaking,
Stone’s results require convergence of the infinitesimal mean and variance to those of
the limiting diffusion plus convergence of boundary conditions when appropriate.

In this paper we shall apply a comparable development in higher dimensions for
a restricted class of limiting diffusions: multivariate Ornstein-Uhlenbeck (m.O.U.)
processes. These results will then be applied to three generalized repairman models. A
special case of a m.0.U. was introduced in I[GLEHART (1968) and the general case in
SCHACH (1971). Problems involving the convergence of Markov chains to a m.O.U.
process arise frequently in practice; see, for example, KARLIN and McGREGOR (1964),
(1965), IGLEHART (1968), SCHACH (1971), and McNEIL and SCHACH (1973).

The original research was supported by the Office of Naval Research under contract
N00014-72-C-0266 (NR-347-022). The revision was supported by the Army Research
Office under contract DAALO03-88-K-0063.




We shall treat sequences of Markov chains in continuous time whose state spaces
are subsets of Z9, the integer lattice points of d-dimensional Euclidean space. RY. \We
view elements z € R? as column vectors. From a given point in the state space we shall
only allow jumps in one step to a finite number of states. Thus multivariate birth-death
processes in which transitions are only allowed to neighboring states are special cases.
The typical situation for a sequence of continuous time chains, say, {X,(t):t > 0}.

n=12,...,Is to form a sequence of processes
Yn(t) = (Xn(t) - nc)/nl/'l’ t 2 01

where c€ R? is a fixed vector. With this setup we would like to conclude under
appropriate conditions that Y, (t) = Y(t), where = denotes weak convergence and Y} is
a m.O.U. process. Also of interest is the convergence of the m.0.U. process as
t — 00:Y(t) = Y(+o0), when this is appropriate. In applications we would approximate
the random vector X ,(¢) by n'/? Y(t) + nc for large n.

A m.0.U. process is a d-dimensional (d > 2) diffusion, that is a strong Markov
process with continuous paths. Furthermore, if the initial state is either a constant or
Gaussian, then the process is Gaussian. It is characterized by two real d x d matrices 4
and B, where A is symmetric and positive definite.

The stationary transition probability density of a m.Q.U. process is given by

(1.1) p(t,z,y) = (27) 2 ()7 exp{-3(t,z,¥)},

where z,y € R?, t > 0,

ftz,y) = (y— u(t)y Z7() (v — u(t)),

-Brz and

pt)=e
t
2(t)=/ e BrAe~Brdr,
0
Here B’ is the transpose of B. As A is symmetric, positive definite and e~2" non-
singular, it is easy to show that Y (¢) is symmetric, positive definite.

The convergence of a sequence of Markov processes has a long history. We
mention next some of the relevant literature. KHINCHINE (1933), Chapter 3.
approaches the problem through the Kolmogorov backward partial differential equation.
Semi-group treatments of these problems have been given by SKOROHOD (1933).




TROTTER (1958), and BURMAN (1979). The stochastic integral approach is discussed
in SKOROHOD (1965), GIKHMANN and SKOROHOD (1965), and GIKHMANN
(1969). An approach using martingales is developed in STROOCK and VARADHAN
(1979). Still another approach can be found in BOROVKOV (1979). In the special case
of birth-death processes see, in addition to the work of Stone mentioned above, the
paper by LIGGETT (1979). Surveys of diffusion approximations arising in applied
probability and queueing theory can be found in GLYNN (1990), and IGLEHART
(1968), (1973), and (1974). For a comprehensive discussion of convergence of a sequence
of Markov chains see ETHIER and KURTZ (1986).

As an example of the repairmen models that we propose to approximate by a
m.0.U. process consider the following. The model consists of n operating units which
are subject to stochastic failure according to an exponential failure time distribution.
The operating units are backed up by m, spare units. Failures can be of two tvpes.
With probability p(q) a failure is a type 1(2) and is sent to repair facility 1(2). Repair
facility 1(2) operates as a si(si)-server queue with exponential repair times having
parameter g,(g,). The number of units waiting for or undergoing repair at facility 1(2) is
XL(t)X?%(t)). The vector X ,(t) = (Xn(t), X%(t)) is a two-dimensional birth-death process
with finite state space. We propose to approximate X ,(t) by n'/? Y(t) + nc, where c is a
specific vector and Y'(t) is a m.O.U. process.

This paper is organized as follows. A description and properties of a m.O.L.
process are given in Section 2. Convergence of continuous time Markov chains is treated
in Section 3. Finally, the application of these results to three repairmen models is given
in Sections 4, 5, and 6. A numerical comparison of diffusion approximations and product

form solutions is given in Section 7 for several of the repairman models.

2. Multivariate Ornstein-Uhlenbeck Processes.

A d-dimensional m.O.U. process is characterized by a d x d symmetric, positive
definite matrix A, a d xd matrix B, and an imtial vector Y(0). Let {W(r):7 >0} be a
d-dimensional Brownian motion which is independent of Y(0) and A'/? the square root
of A;i.e., A= AV} A'Y?). Then the basic defimtion is the following.

Definition 2.1. A multivariate Ornstein-Uhlenbeck process {Y(t):t > 0} is defined by the

ezpression

2.1) Y(t)=e 2 Y(0)+ | Ce=BU=r) 412 W (dr),

0

where the second term is the Ité stochastic integral.




Note that for d = 1,Y(t) = 8" Y(0) + e™*o [* ¢*"W(dr) which is the ordinary -
Ornstein-Uhlenbeck process; <. BREIMAN (1968), p? 347, COX and MILLER (1965).
p. 225. In IGLEHART (1968) the special case of B = I was treated, while for B =0 we
obtain Brownian motion with covariance at time t equal to At. From the definition of
{Y(t):t >0} it is easy to show the following result.

Proposition 2.1. The process {Y(t):t >0} is a continuous Markov process with
stationary transition probability density given by (1.1). Furthermore,

u(t) = EY(t) = e~B'EY(0),

T(t) = E[Y(t) - u(t)] [Y(2) - u(t)] = /'e-a, Ae-B'rdr
and A

R(s,t+$) = E[Y(s) = p(s)] [Y(t + 8) = p(t + 8)] = T(s) 75"

If Y(0) is a constant or Gaussian, then the joint distributions of {{Y(t):t >0} are
Gaussian.

Also the process given by (2.1) is a solution of the stochastic integral equation
(2.2) Y(t)=Y(0)- B / "Yir)dr + AW (2)
0
with corresponding stochastic differential equation
dY (t) = —BY/(t) + A}*W(dt).

We add in passing that one could allow the matrices A and B to depend on ¢ and define
a m.0.U. process with a non-homogeneous transition function; see ARNOLD (1974).
Chapter 8, for a discussion of the non-homogeneous case as well as other background
material. Here, however, we prefer to keep things simple and stick with the expression
(2.1).

For applications we shall be interested in the limiting behavior of u(t) and ¥ (#)
as t—o0o. Since u(t) =e B*EY(0) and e3* is non-singular, u(t)—0 if and only if
e~Bt 0. But ¢~ — 0 if and only if the real part of the eigenvalues of B are strictly
positive; cf., BROCKETT (1970), p. 54. Under the stated condition, the matrix

equation




BC+CB =4

has a unique solution C given by

t—o00

C= / eBTA =B dr = lim T(t):
(V]

cf. BROCKETT (1970), p. 61. It is easy to show that C is symmetric and positive
definite. Also, for this case we can write Y (t) as follows:

T(t) = C —e Bt Ce~ 5",

For further discussion of these problems see BELLMAN (1970), p. 239. and
GANTMACHER (1959), p. 225. Summarizing, we see that if the real part of the
eigenvalues of B are positive, then

Y(t) = N(0,C)

as t — oo, where N(0,C) represents a normal random vector with mean vector 0 and
covariance matrix C.

3. Convergence of Continuous-Time Markov Chains.

Let {X,(t):t>0} (rn=1,2,...) be a sequence of continuous-time Markov chains
with the state space of the n*® chain E, C Z9. Denote the transition probability function
of the n*? process by P!")(t) = {pf;.')(t):i,j € E,; t 2 0} and the associated Q-matrix by
Q(n) = {g;;(n):4,j € E,}. Recall that ¢;;(n) = pf;.')'(O). We form the sequence of processes

(3.1) Y o(t) = (Xo(t) = ne)/nl /2, t>0

where the vector ¢ € R? is selected so that the infinitesmal mean and covariance of
Y .(t) converge to those of a m.Q.U. process. The vector c is called a quasi-equilibrium
point and is the point to which the process X ,(t)/n is attracted for large n. To find c a
heuristic “mass balance” argument can be used. For d =1 this amounts to balancing
the upward force from the birth parameters with the downward force from the death
parameters. For d > 1 the corresponding forces must be balanced in all d coordinate
directions. Let S, = {(i —nc)/\fi:i € E,} be the state space of {Y,(t):¢t > 0}.




Next define the infinitesimal mean vector per unit time for y € S,, as
ma(y) = nE{[Y o(t +7) = Ya(t)]]Y o(t) = 4}
=n'E{{X(#) = X (0)]IY (0) = ¥}
=nt? 2 (et el e (1)

Similarly, the infinitesimal covariance matrix per unit time is given by
Any) = nE{[Y ot + %) = Yo(&)] [Vt +5) = Y&V o(8) = 3}

With these relations for ma(y) and A,(y) we shall assume that the following conditions
hold for specified matrices A (symmetric, positive definite) and B, and some c € R%:

(3.2) the sets S, become dense in R? as n — oo;
(3.3) for fixed z € R?, X,(0) =|nc + n'/? r|as.;
(3.4) there exists J < oo such that for alln > 1

sup {|j —1i]:¢;;(n) >0} < J,
JEE

where |t — j| is the Euclidean distance between i and j;
(3.5) for all K > 0.

dim, sup |m,(y) - By| = 0; and
y€Sn
lvi<K

(3.6) for all K >0,

I —-Al=
Jimg, sup | A,(y) — 4] =0
lvi<K

where for a d x d matrix D the matrix norm |D|} = max |Dz|.
Ti=




Note that (3.2 and (3.3) are natural conditions only involving the state space and initial
configuration of {Y ,(¢):t > 0}. Condition (3.4) limits the size of a single jump. The most
important conditions are (3.5) and (3.6) which require that the infinitesimal mean
vector and covariance matrix converge uniformly in bounded subsets of S, to the mean
vector B a1 covariance matrix A of the limiting m.O.U. process {Y(t):t > 0}.

Proposition 3.1. If {X,(t):t >0} is a sequence of Markov chains satisfying (3.2) - (3.6).
then for everyt >0

Y.(t) = Y(t)

as n — oo, where {Y(t):t > 0} is the multivariate Ornstein-Uhlenbeck process defined in
(2.1) with Y(0) = z and matrices A and B.

The arguments in STROOCK and VARADHAN (1979), Section 11.2, can be
adapted to prove this result; see PRISGROVE (1987), Theorem 2.1, for detaiis. Also
application of Rebolledo’s Theorem can be used; see ETHIER and KURTZ (1936),
Theorem 4.1.

4. Two ltems, One Service Facility Repairman Model.

Our first model consists of two types of operating units, n, units of type I and n,
units of type 2, where n, + n, = n. There are m,, and m,, spares for the two types of
items, respectively. Both types of units are subject to failure according to independent
exponential failure distributions with parameters A, A, > 0, respectively. Both types of
failed units require service from a single service facility which operates like an s, -server
queue. The service times for repair at this facility are exponential with parameters
By i > 0, for the two types of units, respectively. Type 1 units have preemptive
priority over type 2 units for service; i.e., if on arriving, a failed unit of type 1 finds all
servers busy, it preempts a type 2 unit, if any are being served. Service on type 2 units
is resumed. Due to the exponential service times, the analysis is identical for the case
where service is repeated. One reasonable interpretation of this model is that type 1
units are more critical than type 2 units, and the former have to be repaired as soon as
possible. The flow of units is shown in Figure 1.

Let Xi(t) denote the number of type i units waiting or undergoing repair at the
service facility at time t, : =1,2. The assumption of exponential failure and repair
distributions means that the process X, (t)= (X}4(t),X%(t)) is a positive recurrent
Markov chain with a finite state space, E, = {(i,j)|0 i< n; + m,;, 0 < j <ny+m,,}
as depicted in Figure 2. We shall have occasion to distinguish three regions in the state




space. These are denoted by A,, B, and C, in Figure 2. For all the models we shall
discuss, the elements of the

Type 1 Operating Units| Type 1 Spares
ny ’\1 o Mp
Y /
Repair Facility L
‘/ sn'l ""A’ #2 :
7 -~
A Type 2 Operating Units Type 2 Spares /
Ny, AZ < Mn2

Figure 1. Two Items, One Service Facility Model

sn Bﬂ Cﬂ
Xi(1)
N
A, .
o
0 Sn n +m,,
XK()

Figure 2. State Space for X (t)




matrix @(n) = {g;,(n):4,; € E,} will be denoted as follows: for : = (i,,1,)

g:i;(n) = |

where k,€ = 1,2, k # &, s™(i) = -5 M)+ uP(0)] + 3 +P(), and e, is the vector

ke
with 1 in the k** position and 0 elsewhere. Table 1 outlines the infinitesimal
parameters in the three regions for the process {X,(t)}. The parameters of the system

[ s,
AG),
s G),
7RG,

0,

L

k, =1

j=i

J=i—e

J=i—e

J=i1—¢e+e

other j,

k,€=1

are assumed to have the following asymptotic behavior as n — oo:

Sp ~ NS, O0<s<l;
n; ~ np;, 1= 1,2; P1,p2 > 0;
and
Mp; ~ M, 1=1,2; m; > 0.
Region|
An Bﬂ Cn
Parameters
A(I")(i,j) Al{nl A (n1+mn1—i)} ’\1{"1 A (n1+mnl—i)} '\1{"1 A(ny+m,,-i)}
MM 5) (A{ng A (ng+m g=1)} (Ag{ng A (g +mpg=i)HAy{ng A (ng+m p—))
#g")(i, j) iy i Snhq
u§(, 5) it (8= )by 0
13 j 0 0 0
756.5) 0 0 0

Table 1. Infinitesimal Parameters for the Two Item Model

ptpp=L




This model is characterized by eight independent parameters in addition to n
the total number of operating units' namely, A, Ay, gy, 4a, 8, m;, m, ana p,. In terms
of these parameters we would like to be able to approximate the behavior of various
processes characterizing the system, when n is large. This model satisfies the
conditions spelled out in Section 3 for a sequence of continuous-time Markov processes.
Thus we shall approximate X,(t) by an appropriate m.0.U. process. The
approximation will depend on certain relationships among the independent parameters
mentioned above. Here we shall illustrate one such case. The traffic intensity of the "
item is p,;p,/s, where p,=\/u, for 1=12. Set a,=A/(\+py) K =
a,p(l+(p;,Am,), &, =1 if p,>m; and 0 if p, <m;, where 1 =1,2 for all of the
constants. Suppose k;, + k, < s. Then to solve for the vector ¢ we find the stace (i.) in
which both the left/right forces and the up/down forces are balanced. To balance the
left /right forces we set

A A(ny +myy =)} =24, =0
Divide through by n, set i{/n = ¢;, and let n — oo to obtain

pip AP+ pimy — )} = ¢y

and solve for ¢, to find that ¢, = k,. The same argument shows that ¢, = k,. Next we
solve for the elements of the B matrix. Select y € R?, then for n large
[nc +n'/%y| € A,, hence

(v) "-1/2“1{"1 A(ny +mg, —|nc, + nlnle)} - ihlne, + nl“yd
Tlln y =
"—1/2“2{"2 A(ng+my, —|nc, + n”’y,])} — po ey + n"’y,j

M + 0 U
= - +o(1),
0 Ay + 4y Y2

where the vector o(1) is uniform in y for y in a compact set of R?*. The matrix A is
calculated in a similar manner. Note in this case that the eigenvalues of B are real and
positive, so the 3°(t) — C.

With this relationship among the parameters the vector nc lies in the region A,
for large n. If we set X,(0)= |_nc+n”2:c_| for some z € R? in accordance with (3.3).

10
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then for n large X,(0) will also lie in A,. As the process X, (t) has fluctuations about

1/2 and the distance from the boundaries of the region A, to the point

nc of the order n
nc is of order n, the process X ,(t) never leaves the region A, with any appreciable
probability. Thus we need only be concerned with the infinitesimal mean and
covariance for the process Y, (t), when X, (¢) lies in A,. Similar remarks hold for the
other cases. Having obtained approximations for Xi(t), the number of units down of
type ¢ at time ¢, it is easy to obtain approximations for the number of operating units
of type i at time ¢, Zi(t) = n; = [X4(t) — m,;]*. See Table 2 for the parameters of the

m.0.U. processes.

Condttions

Parameters

: (ks k) (k11 pa1 4 ma) = (s~ k) 32) (pr(1 4+ mp) -2

po(l + m?))
2p1k; O 2p,k, 0 2spy 0
A
0 2k, 0 g5 ~ ky) 0 0
(M +uy) 0 (A gy + 1) 0 A0
B
ky 0 ky paky PR
-1
ekz T Haky s—k Hak1Py 0 0
Patat (P& + DO+ +08) P2 (8 + 1)(Ag + 1y + M)

Table 2. Parameters for Limiting Process - Two Item Model

Next we make a number of qualitative remarks about the behavior of this

system when n is large.
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1. If the sum of the traffic intensities of the two types of items is less than 1 (light’
traffic), then k, +k;<s. The number of down units is roughly n(c, +c¢,s =

n(k, +k;) < <, so no queues form. Note also that the components of Y(+5c) are
independent: c;; =0. The two item model in this case behaves exactly like two
independent one item models. The fraction of type i operating units at time t.
Zn(t)/n,, is roughly 1 — [X5(t)/n; = m,]* = 1—[(c,/p;) = m,]*. Thus to insure n, units
up with high probability we only need ¢;/p, < m; But this will be guaranteed if
Ai/p; £m;. So to have a full complement of operating units of type : we need onlv
provide A\;n;/u, spares. Any more are wasted: they just create further congestion at the

repair facility.

2. If the traffic intensity of type 1 item is greater than 1 (heavy traffic), then &, > s.
All but s_u,/), items of type 1 and all items of type 2 are at the service facility with
high probability. All the servers are busy with type 1 units and all type 2 units simply
wait in queue and are never served. In this case, it does not help to have spares of
either kind in the system. Notice also that the limit process is degenerate in the second
component. This case departs from our general theory in that the matrices A and C

are only positive semi-definite.

3. If neither of the above two cases hold, then there is possible interaction between
the two types of items. As it should be, spares of the type 2 item have no effect on the
behavior of type 1 items, whereas there is a very strong dependence in the reverse case.

4. Given the independent parameters of the system, one can calculate a threshold
level beyond which it does not help to add any more spares. This threshold level for
the spares of item 1 is nA;/u; (1 =1,2) for the first case mentioned above and 0
(t=1,2) for the second case. An intuitive explanation for the above result is the
following: once the spares reach this threshold level, one of two cases occur—in one
case, the level of units operating are at their maximum and adding more spares just
adds to the pool of spares; in the other case, the service facility is congested to the
point of capacity and adding more spares just adds to the congestion with no increase
in the level of operating units.

5. One Item, Two Repair Facility Model.

This model consists of n units, m, spares, and two repair facilities. The
operating units are subject to failures according to an exponential failure distribution
with parameter A > 0. Two types of failures are possible. With probability p(q) a

12




failure of type one (two) occurs and the failed unit requires service from repair facility
1(2) which operates like an sh(s%)-server queue with exponential service time
distribution having parameter y,(u,). When repairs are completed on a unit, it returns
to the spare pool and is once again available to be used as an operating unit. The flow
of units in the system is shown in Figure 3. This is the same model considered by
IGLEHART and LEMOINE (1973, 1974). Let X4(¢) denote the number of units
waiting and undergoing repair at facility ¢ = 1,2. The assumption of exponential failure
and repair distributions means that the process X (t) = (XA(t), X%(t)) is a positive
recurrent Markov chain with a finite state space, E, = {(i,j):4,7 20, i+ j<n+m_}.
depicted in Figure 4. We shall have occasion to distinguish four regions in the state
space. These are labeled A,, B,, C, and D, in Figure 4. Table 3 outlines the
infinitesimal parameters in the four regions for the process X, (t). As n — oc, the

parameters of the system are assumed to behave as follows:

sh ~ ns;, 0<s; <1, =12,
m, ~ mn, m>0.
Operating Units Spares
n o~ m,
Y N
P Repair Facility |
> >

s}v‘"l

Repair Facility 2

Y o
Y

Spe b

Figure 3. One Item, Two Service Facilities Model
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n+m

X3(¢) B,
D,
H
A" Cﬂ
sy n+m,
Xa(1)
Figure 4. State Space for X ,(¢)
Region|
All B'I C'I Dl'l
Paramete
MG, ) | Ap((ntmp=i=j) An) [Ap((n +m —i=j) An)| Ap((n+m,—i=j) An [Ap((n+m,=i=)) A n) |
i
MV, 5) | M((n+ma=i-j) An) [Ag((n+m —i—j)An [Mg((n+m,—i=j)An |Ag((n+m ~i=j) A uil
“(ln)(,"j) ™ iuy shuy shu, %
1
w6, 5) ™ " ™ $huz
¥{5G.4) 0 0 0 0
726, 5) 0 0 0 0

Table 3. Infinitesimal Parameters for the Two Facilities Model

The parameters ¢, A, B and C of the limiting m.0.U. process have been calculatel
and are displayed in Table 4. The constants k,, k;, and £ are defined as follows:

14




o
)
il
D
e

Hy Ap M
BT,
and
A A
1, m <-p—1+71-2'
= A A
P q
I T
Conditions
kL sy >k 1 k .
SI> 1,S2> 2 51>ES:),32< 2 sl< 1,52>F"31
Parameters

ky HaS2 (Ap B13) (Aq ky o
(& (Ll'k2) (k—Q’ 89y 1+ 2 3 (”l + 1)) (1 +m-— AP (u—? + 1).E.bl))
24,8, p
2p1ky 0 7 0 2ps, 0
A
0 2ﬂ2k2 0 2[-‘232 0 2[1151"5
(4, +Apt)  Apt (#y +2p) Ap Ap Ap
B
Apt  (uy+Apt) Ag Ag Ag (ug+Ag)
I Aptk, 7 110r M T
B+ o) krkg SaHaP _ SohgP wall+m) s,
iy + Apé T 1+4m "q 9 Ap HaP
C Agek, Ap
_ kb, kalka + Tm) _ SaHap 52“7(1 +T‘T) _sikg 5141
14+m B + Agé Mg Aq HaD HoD
L. = - 5

Table 4. Parameters for Limiting Process - Two Facilities Model
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Note that the traffic intensities at the two facilities are Ap/s,u, and Aq/s,u,. Based on
these results, the following remarks can be made regarding the behavior of the system
when n is large.

1. If the traffic intensities at the two facilities are individually less than 1 (light
traffic), no queues form. It does not help to increase the spares beyond
n(Ap/u, + Ag/u,). At this critical level, n units are operating with high probability.
Adding more spares only adds to the congestion at the facilities. Note that the

components of Y(+oo) are independent, whenever ¢ = 0.

2. If the traffic intensity at facility 1 is less than that at facility 2 and the latter is
greater that 1 4+ Ap/u, + Aq/u,, the following holds true: having spares does not change
the number of items at facility 1. Also, spares only increase the congestion at facility 2.
So, in this case, there is no advantage in having any spares. The number of units
operating is inversely proportional to the traffic intensity at facility 2. A similar
statement can be made by reversing the roles of facility 1 and 2.

6. One Item, Series Facility Model.

This model consists of n units, m, spares, and two repair facilities in series. The
operating units are subject to failure according to an exponential failure distribution
with parameter A > 0. All failed units receive service at repair facility one, which
operates like an s)-server queue with exponential service time having parameter .
With probability p, each item serviced at facility one also requires servicing at facility
two, which operates like an s3-server queue with exponential service time distribution
having parameter u,. When a unit has been serviced either only at one facility or at
both facilities, it returns to the spare pool and is once again available to be used as an

operating unit. The flow of units in the system is shown in Figure 5.
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Operating Units Spares
n ~ m,
Y N
Repair Facility 1 q
Sno b g
P
Repair Facility 2
5?\1 B2 -

Figure 5. One Item, Series Facilities Model

Let X! (t) denote the number of units waiting and undergoing repair at facility
t =1, 2. The assumption of exponential failure and repair distributions means that the
process X ,(t) = (XL(t), X%(t)) is a positive recurrent Markov chain with a finite state
space E, = {(1,7):%,7 20, i + j < n+m,}, depicted in Figure 6. We shall have occasion
to distinguish four regions in the state space. These are labeled A,, B,, C,, and D, in
Figure 6. Table 5 outlines the infinitesimal parameters in the four regions for the
process X ,(t). As n — oo, the parameters of the system are assumed to behave as
follows:

Sh~ns;, 0<s;<1,1=1,2,

m, ~ mn, m>0.
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n+m

X2(t) B,
Dn
Sn
A, Cn
sh
Xa(t)

n+m

Figure 6. State Space for X ,(¢)

Region 1
A, B, Cn D,

Paramete, |
A(l")(i,j) AnA(n+m —i—j) [MnA(n+m-i-j)) | AnA(n+m=i=j)) |MrA(n+m=-i=-))) l
AP, 5) 0 0 0 0
w™, ) igm igu, Shamy Shauy
wG, ) by sam Ty Sauy
13, 5) i ipky ShPiy shPwy
¥, 5) 0 0 0 0

Table 5. Infinitesimal Parameters for the, Series Model
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Again the parameters ¢, 4, B, and C of the limiting m.0.U. process have been
calculated and are given in Table 6. The constants k,, k;, and ¢ are defined as follows:

r .
A
l+(m/\(l%+“—s))

A
BL= R
+7;,-l-+-“—2-

- -
A
l+(m/\(ﬁ-\;+p—f))

ky =3
_/"'2 A Ap ’
i I+ﬁ-l-+F2'
A
1, m<‘%+32-
¢ =
A
0, m2g+%

Here the traffic intensities at the two facilities are A/s,u, and Ap/s,u,. The following
remarks can be made about the system for large n.

1. If the traffic intensities at the two facilities are individually less than 1 (light
traffic), no queues form. It does not help to increase the spares beyvond
n(A/py + Ap/uy). At this critical level, n units are operating with high probability.
Adding more spares only adds to the congestion at the facilities. Note that ¥Y'(+xc)
and Y?(+400) are negatively correlated.

2. If the traffic intensity at facility 1 is less than that at facility 2 and the latter is
greater that 1 + A/u, + Ap/p,, then having spares does not change the number of items
at facility 1. Also, spares only increase the congestion at facility 2. So, in this case.
there is no advantage in having any spares. The number of units operating is inverselv
proportional to the traffic intensity at facility 2. A similar statement can be made by
reversing the roles of facility 1 and 2.

19




Conditions

k k
51 > ky, 59 > ky .<>'1>,L_—152,s2<1c2 51<k1132>;72‘
2
|
Parameters }
X ky kyoo B ky e '
¢ {ky, kp) (SQE,Hm-SZE(HT)) (l+m—slk—l(£+,—\—}—)).qsl)
-2 s |
Ha$ .
4 2uiky  —pykyp ; E —Ha89 sSSP !
—mp  2mkyp ~HaS2 2289 ~HStP S(P
TS IY’ (18 +A) A A A
B
—H P B —p#p 0 0 Hao
pk |, Mpe Apikpt | HaSy Mo B8 gy - M2SIP
. AL | o A pHig) | s M pppg)t || PP AP P a
_ Ap by pl pokp(py+€) M8y (ATH)HgS, 5P S
HiHg+A(Byp+ig)e b+ A(By Pt pg)e WP HP Ha Ha
e -} i ) o

Table 6. Parameters for Limiting Process - Series Model

7. Numerical Example.

We note that the models described in Sections 4, 5, and 6 can be viewed as

closed Jackson networks of queues. The two item, one service facility model of Section

4 requires the added complexity of different customer classes to be treated as a closed

Jackson network. For that reason we do not discuss a numerical example of that

model. In this section we present numerical examples of the models from Sections 3

and 6 to compare the diffusion approximation with the product form solution which is

available for closed Jackson networks.




Example 1. Two Facilities Models of Section 5.

Three cases are treated here. For all cases py =2, py, =3, A=1, m=06. "
p = 0.143, and ¢ = 0.857. The only parameters that vary are s,and s,. The three cases
coincide with the three columns of Table 4. Table 7 contains the numerical values of
the parameters for the limiting process for all three cases. Next we compare the
approximation for the expected number of jobs at repair facility 1 and at repair facility
2 with the same values as computed using the product form solution. These
comparisons were made for n = 10, 25, 50, and 100. For the product form calculation
we used s{) = |ns;}. The comparisons can be found in Tables 8, 9, and 10. In general
the diffusion approximation is very close to the exact product form solution even when
n = 10. The one exception occurs in Table 10 for n = 10, but this is a consequence of
s =1.04x10] =0.

Conditions
5, =048 s, =0.64 sy =050 s,=0.20 5, =0.04 s =10.60
sy > ky, 59 > ko 5 > L_l sy < ky sy <ky s> ';:‘251
Parameters 2 !
c (0.07143, 0.28571) (0.05006, 0.84983) (0.88075, 0.15999)
0.28600 0 0.20023 0 0.16000 0
A
0 1.71400 0 1.2 0 0.95383
2.0 0 2.14300 0.14300 0.14300 0.14300
B
0 3.0 0.85700 0.85700 0.85700 3.85700
0.07143 0 0.05006  —0.05006 0.71925 ~0.15981
@
0 0.28571 ~0.05006 0.75018 —0.15981 0.159&1

Table 7. Parameters for Two Facilities Models

21/




Expected Number at Facility 1 Expected Number at Facility 2
n Approximation Product Form Approximation Product Form
10 0.715 0.707 2.857 2.870
25 1.787 1.785 7.142 7.133
50 3.575 3.575 14.280 14.280
100 7.150 7.150 28.570 28.570
Table 8. Comparison for Case s, = 0.48, s, = 0.64
Expected Number at Facility 1 Expected Number at Facility 2
n Approximation Product Form Approximation Product Form
10 0.501 0.494 8.498 8.284
25 1.251 1.251 21.250 21.120
50 2.503 2.503 42.490 42.370
100 5.006 5.006 84.980 84.710
Table 9. Comparison for Case s, = 0.50, s, = 0.20
Expected Number at Facility 1 Expected Number at Facility 2
n Approximation Product Form Approximation Product Form
10 8.807 0.000* 1.598 0.943
25 22.020 22.010 3.995 3.995
50 44.040 44.040 7.991 7.991
100 88.070 88.070 15.980 15.980

Table 10. Comparison for Case s, = 0.04, s, = 0.60
*These results are a consequence of taking s{” =|.04x10] =0

Example 2. One Item, Series Facility Model of Section 6.

Again we treat three cases corresponding to the three columns of Table 6. For
all cases y; =2, y, =3, V=1, m=0.6, p=0.143, and ¢ = 0.857. Table 11 contains the
numerical values of the parameters for the iimiting process in all three cases. In Tables
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12-14 we again compare the approximation and product form solution for the expected

number of jobs at the two repair facilities for the case n = 50 and 100. The diffusion

approximation is again quite close to the exact product form solution in all cases

expect those in Table 13 where the error can be as large as 19%.

Conditions
s, =0.75 s, =0.52381 sy = 0.625 s, = 0.02381 5, =025 5, =05119
k ke,
sy > ky, 5y > ky 5> k—lsz, 5y < ky §p < ky, $> 1
Parameters ’ |
¢ {0.5,0.047619) (0.25,0.85) (1.07669,0.023&1)
2.0 -—0.143 0.99900 —-0.07143 1.0 -0.715
A
—0.143 0.286 —-0.07143  0.14286 -0.715 0.143
.
2.0 0 3.0 1.0 1.0 1.0
B
-0.286 3.0 —0.286 0.0 0 3.0
0.5 0 0.24976  —0.24976 0.52383  —0.023483
C \
0 0.04770 -0.21976  0.74927 —0.02383  0.02383 1 1‘
Table 11. Parameters for One [tem. Series Facilities Models ‘
Expected Number at Facility 1 Expected Number at Facility 2
n Approximation Product Form Approximation Product Form
50 25.0 24.61 2,383 2.346
100 50.0 | 49.59 4.767 4.728

Table 12. Comparison for Case s, = 0.75, s, = 0.52381

/
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Expected Number at Facility 1 Expected Number at Facility 2 !

n Approximation Product Form Approximation Product Form }
50 12.49 10.49 42.54 48.53 ]
100 24.98 20.9¢ 85.08 97.06 ]

Table 13. Comparison for Case s, = 0.625, s, = 0.02381

Expected Number at Facility 1 Expected Number at Facility 2 l

n Approximation Product Form Approximation Product Form f
50 53.81 54.86 1.192 1.144
100 107.60 107.60 2.383 2.383

Table 14. Comparison for Case s, = 0.25, s, = 0.5119

While the limit theorem stated in Proposition 3.1 guarantees convergence of the
sequence of approximating processes to a m.O.U. process, nothing is said about the
goodness of the approximation for finite n. A method for judging how good the
approximation may be was developed in PRISGROVE (1987). A numerical algorithm
was constructed which computes the largest ellipsoid in R? with center at nc within
which the form of the birth and death parameters remain unchanged. The
approximation to the steady-state vector has distribution which in N(nc,nC). Finally,
the probability that this N(nc,nC) vector falls within the above ellipsoid is computed
in terms of a x4 random variable. If this probability is high, we would expect a good
approximation and if not we are warned to be careful about any claims made for the
approximation. Numerical examples given in PRISGROVE (1987) show the usefulness
of this approach.

Acknowledgement. Thanks are due to a referee who made constructive suggestions for
improving the paper, Professor Tom Kurtz for providing references to the proof of
Proposition 3.1, and Dr. Lindsay Prisgrove for correcting some errors in the values of
the matrices A, B and C in the examples. Dr. Prisgrove also provided the numerical
examples comparing the diffusion approximations and product form solutions
contained in Section 7.
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